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Abstract
We construct a class of algebraic invariants for N-qubit pure states based on
bipartite decompositions of the system. We show that they are entanglement
monotones, and that they differ from the well-known linear entropies of the sub-
systems. They therefore capture new information on the non-local properties
of multipartite systems.

PACS numbers: 03.67.Mn, 03.65.Ud

1. Introduction

In contrast to bipartite systems, the nature of entanglement in multipartite systems is at present
only partially understood. An important step forward would be the determination of a complete
set of algebraic invariants (AI) for multipartite systems of arbitrary size. For an N-particle pure
state, |�〉 = ∑

ab1,...,bN
|b1〉 ⊗ · · · ⊗ |bN 〉, the AIs are algebraic functions of the coefficients

ab1,...,bN
which are invariant under local unitary transformations (LU) [1].

Although invariance under LU is crucial, it is not the whole story, since one usually
considers a more general situation in which the parties can perform additional non-unitary
operations (such as local measurements), and can communicate classically with one another.
The combinations of local operations and classical communication is denoted by LOCC. The
pertinent measures of entanglement here are the entanglement monotones (EMs). These are
AIs which are non-increasing, on average, under LOCC [2].

Whether speaking of the AIs or the EMs, the number required to entirely specify the
non-local properties of the system increases exponentially with the number of particles [1],
and thus a complete description seems out of reach for large systems. Indeed, a complete
set of AIs are only known for systems of up to four qubits [3]. Consequently, in considering
multiparticle entanglement, we must seek useful measures that capture essential features of
the entanglement, and/or are simple to calculate.

Emerging as the most important EM for pure states is the hyperdeterminant � [4]. The
hyperdeterminant is afforded this status because it is nonzero only for those states which

0305-4470/04/348293+10$30.00 © 2004 IOP Publishing Ltd Printed in the UK 8293

http://stacks.iop.org/ja/37/8293


8294 C Emary

possess genuine N-particle entanglement. For two qubits, � is the concurrence [5] and for
three qubits, the tangle [6]. For systems of more than four qubits, the explicit calculation of
� is highly nontrivial.

Other useful EMs exist for N-qubit systems. A good example is the von Neumann entropy
(or its linearized form) of a single qubit with the rest of the system. This tells us whether the
qubit in question is separable or not. Meyer and Wallach (MW) [7] introduced an N-qubit
entanglement measure which, as Brennen has shown [8], is equivalent to the average of all the
single-qubit linear entropies.

MW construct these linear entropies in a particularly elegant fashion, and in this article we
introduce a new family of EMs obtained from a generalization of this construction. We show
that these quantities are EMs, and that they reflect an aspect of the entanglement different to that
captured by the linear entropies of all sub-systems. The utility of these EMs is demonstrated
by considering the four qubit system. Here, our EMs reproduce the fundamental algebraic
invariants recently described by Luque et al [3], and also prove useful in differentiating
between the nine families of four-qubit entangled states recently described by Verstraete et al
[9]. The simplicity of our construction gives the prospect of extending these results to larger
numbers of qubits.

The paper proceeds as follows. In section 2 we describe the construction of these
entanglement monotones. In section 3, we consider some important properties; we
demonstrate that they are indeed EMs and compare them with linear entropies. We consider
in detail the four qubit system in section 4, and conclude with a discussion in section 5. In the
appendix we give the details of the proofs used here.

2. Construction

A pure state of N qubits can be written as

|�〉 =
∑

b1,...,bN

ab1,...,bN
|b1 . . . , bN 〉 =

L−1∑
X=0

aX|X〉 (1)

where X is the decimal for the binary string b1, . . . , bN such that 0 � X � L−1 with L = 2N .
Meyer and Wallach [7] introduced the single-qubit ‘reduction operators’ ι

(k)
B , which act on

qubit k in the following manner:

ι
(k)
B |b1, . . . , bN 〉 = δbk,B |b1, . . . , b̂k, . . . , bN 〉. (2)

The circumflex denotes absence. As B ∈ {0, 1} can take on one of two values, the action of
reduction operators at locus k of |�〉 gives the two vectors

ι
(k)
0 |�〉 = ∣∣V(k)

0

〉 = L/2−1∑
X=0

V
(k)

0 (X)|X〉 (3)

ι
(k)
1 |�〉 = ∣∣V(k)

1

〉 = L/2−1∑
X=0

V
(k)

1 (X)|X〉 (4)

which MW combine to form the N quantities

D
(k)
1 = 4

∑
X<Y

|V0(X)V1(Y ) − V0(Y )V1(X)|2. (5)
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They then define their entanglement measure Q1 as the average over all qubits k of these
quantities

Q1 ≡ 1

N

N∑
k=1

D
(k)
1 . (6)

As we see below, the quantities D
(k)
1 are themselves EMs, and are equal to the linear entropies

of the kth qubit [8].
We extend the MW construction by introducing reduction operators I

(k1,...,kn)
Bk1 ,...,Bkn

that act on
n qubits,

I
(k1,...,kn)
Bk1 ,...,Bkn

|b1, . . . , bN 〉 ≡ δb1,Bk1
, . . . , δbn,Bkn

|b1, . . . , b̂k1 , . . . , b̂kn
. . . bN 〉. (7)

We reference these operators by the locus {k} ≡ k1, . . . , kn describing the qubits on which I
acts (the reduced qubits), and by the decimal X corresponding to the bit-string Bk1, . . . , Bkn

.
The integer n runs from unity to either N/2 or (N − 1)/2 depending on whether N is even or
odd. The action of I

{k}
X on |�〉 is to produce the (N − n)-qubit state

I
(k1,...,kn)
X |�〉 = ∣∣V(k1,...,kn)

X

〉 = L̄−1∑
Y=0

V
(k1,...,kn)
X (Y )|Y 〉 (8)

with L̄ ≡ 2N−n. For a given locus {k}, there are l ≡ 2n vectors V{k}
X of length L̄.

To construct our EMs we introduce the operator dxj , which assigns to vector V its j th
component, i.e. dxj (V) = V (j), and combines them in the wedge product defined as [10]

l−1∧
i=0

dxji
(V0, . . . , Vl−1) ≡ Det (dxji

(Vm))i,m=0,...,l−1. (9)

The wedge product is completely antisymmetric with respect to interchange of any two vectors
in its argument, and is zero for any two repeated arguments.

Writing the ordered set of vectors obtained from the action of all I
{k}
X operators at a given

locus as {V} ≡ {
V(k1,...,kn)

0 , . . . , V(k1,...,kn)
l−1

}
, we define the quantities

D(k1,...,kn)
n ≡ l2

 ∑
j0<···<jl−1

∣∣∣∣∣
l−1∧
i=0

dxji
({V})

∣∣∣∣∣
2


2/l

. (10)

These are the objects that we study in the rest of the paper, and as we show below, they are
EMs.

For a given n there are
(
N

n

)
quantities D

({k})
n , except when n = N/2 with N even, in which

case there are half this number since, there are then only 1
2

(
N

N/2

)
distinct bipartite divisions. For

example, for four qubits we have four D
(k)
1 and three D

(k1,k2)
2 measures. These are not

necessarily all independent. For n = 1, we recover the quantities of equation (5)
introduced by MW. Furthermore, for the two-qubit system |�〉 = ∑1

ij=0 Aij |ij 〉, we have
D1 = 4|Det A|2 = C2, the square of the concurrence—itself an EM.

3. Properties

3.1. The quantities D
({k})
n are entanglement monotones

In the appendix, we investigate the properties of the quantities D
({k})
n under unitary

transformations. We show that not only are they invariant under single qubit unitary
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transformations but, writing the wavefunction as |�〉 = ∑l−1
i=0 |φi〉|Vi〉 where |φi〉 are states of

the n reduced qubits, we show that D
({k})
n is also invariant under unitary transformations of the

whole subspace spanned by |φi〉. Consequently, writing |�〉 in the Schmidt decomposition,
|�〉 = ∑l−1

i=0 |φi〉|Ṽi〉 with |Ṽi〉 orthogonal but not normalized, leaves D
({k})
n unaltered. The

Schmidt coefficients are 〈Ṽi |Ṽi〉 � 0.
Using this decomposition, we show in the appendix that D

({k})
n can be written as

D({k})
n = l2

{
l−1∏
i=0

〈Ṽi |Ṽi〉
}2/l

. (11)

This form shows that D
({k})
n is indeed an EM. From Vidal [2], we know that all entanglement

monotones of a bipartite system can be expressed as g({αi}), where g is a symmetric,
concave function of the Schmidt coefficients {αi}. Equation (11) shows D

({k})
n to be equal

(up to normalization) to the geometric mean of the square of the Schmidt coefficients(
g = l

√
α2

1 . . . α2
l

)
. Since for n > 1 this is manifestly a concave function, it follows immediately

that D
({k})
n>1 is an EM. The quantities D

(k)
n=1 are also EMs, as can be seen by comparison with

the linear entropy, below.
The power 2/l in equation (11) is chosen to be the maximum that ensures that D

({k})
n is

an EM for all n. This choice is justified further in the appendix, where we show that with it,
D

({k})
n transforms under local POVM in the same way as do the concurrence-squared and the

tangle.
These quantities have the interesting geometric interpretation as being proportional to

the square of the length of side of the hypercube with the same volume as the parallelogram
defined by the set of vectors {V}.

3.2. Comparison with linear entropies

Since the construction of D
({k})
n is predicated on a bipartite division of the system, we now

compare D
({k})
n with a more familiar EM based on the same division, namely the linear entropy

of qubits {k} with the rest of the system. The linear entropies are defined as

S(k1,...,kn)
n ≡ ηn

[
1 − Tr

(
ρ2

k1,...,kn

)]
(12)

where ρk1,...,kn
is the reduced density matrix of qubits k1, . . . , kn, and ηn = 2n/(2n−1) provides

suitable normalization [11].
By utilizing the Schmidt decomposition as above, we write

S({k})
n = ηn

(
1 −

l−1∑
i=0

〈Ṽi |Ṽi〉2

)
. (13)

Thus, S
({k})
n is constructed from the sum of the squares of the Schmidt coefficients, and is an

EM since 1 − x2 is a concave function.
For n = 1, this relation, plus the normalization of the Schmidt coefficients, 〈V0|V0〉 +

〈V1|V1〉 = 1, shows that D
(k)
1 = S

(k)
1 . This was the relation noted by Brennen in connection

with the original MW measure [8]. For n � 2 this identification does not hold.

3.3. Simple applications

Considering the form of D
({k})
n from equation (11), it is clear that the minimum value of

D
({k})
n is zero, occurring when any 〈Ṽi |Ṽi〉 = 0. The measure D

({k})
n is maximized when

〈Ṽi |Ṽi〉 = 1/l; ∀i, from which we see that D
({k})
n is normalized such that max D

({k})
n = 1.
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If the block of qubits {k} is separable from the rest of the system, then D
({k})
n = S

({k})
n = 0.

Moreover, if any of the qubits in {k} separates, then D
({k})
n = 0, whereas the corresponding

entropy would be nonzero in general. Neither S
({k})
n nor D

({k})
n are necessarily zero if there are

separable qubits in the conjugate locus {k}.
For the N-qubit GHZ (Greenberger–Horne–Zeilinger [12]) state, |γ 〉 ≡

2−1/2(|0〉⊗N + |1〉⊗N), one has D
(k)
1 = 1 and D

({k})
n�2 = 0. For the N-particle W -state, |ω〉 ≡

N−1/2∑N
j=1 |0〉⊗j−1 ⊗|1〉⊗|0〉⊗N−j , we find D

(k)
1 = 4(N −1)/N2 and D

({k})
n�2 = 0. In contrast

S
({k})
n�2 is nonzero for both these states; S

({k})
n (γ ) = ηn/2 and S

({k})
n (ω) = 2ηn(N − n)n/N2 for

all n [11].
A necessary, but not sufficient, requirement for at least one D

({k})
n to be nonzero is

that |�〉 must be a superposition of at least 2n states. For example, the four-qubit state
1/2(|0000〉 + |0101〉 + |1010〉 + |1111〉) has D

(1,2)
2 = D

(1,4)
2 = 1,D

(1,3)
2 = 0.

Finally, to demonstrate that information is contained in D
({k})
n�2 that is not in S

({k})
n�2 , consider

the two four-qubit states

|ψ±〉 = 1√
8
(|0000〉 + |0001〉 ± |0110〉 ± |0111〉 ± |1001〉 + |1010〉 + |1100〉 + |1111〉). (14)

Both states have the same linear entropies but, whereas |ψ+〉 has all D
({k})
2 = 0, |ψ−〉 has

D
(1,2)
2 = D

(1,3)
2 = 1/2, D

(1,4)
2 = 0. This shows D

({k})
n to be independent of S

({k})
n for n � 2.

After these simple examples, we now consider in detail the case of four qubits.

4. Four qubits

Consider the general four-qubit state

|�〉 =
15∑

X=0

aX|X〉 (15)

in the usual decimal representation of a bit-string. The explicit forms of S
({k})
1 = D

({k})
1 and

S
({k})
2 are unenlightening. However, the set of three D

({k})
2 operators reveals the use of this

construction. We find

D
(1,2)
2 = 16

∣∣∣∣∣∣∣∣Det


a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15


∣∣∣∣∣∣∣∣ (16)

D
(1,3)
2 = 16

∣∣∣∣∣∣∣∣Det


a0 a2 a8 a10

a1 a3 a9 a11

a4 a6 a12 a14

a5 a7 a13 a15


∣∣∣∣∣∣∣∣ (17)

D
(1,4)
2 = 16

∣∣∣∣∣∣∣∣Det


a0 a1 a8 a9

a2 a3 a10 a11

a4 a5 a12 a13

a6 a7 a14 a15


∣∣∣∣∣∣∣∣ . (18)

These are the moduli of the three fundamental algebraic invariants found by Luque et al for
four qubits using classical invariant theory [3]. The status of these algebraic invariants is
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elevated to EMs once the modulus is taken. Note that only two of these three quantities are
independent.

Furthermore, our measures D
({k})
n are useful in distinguishing between types of

entanglement in four-qubit systems. The states of N qubits may be grouped into families
under the principle that all the members of a family may be converted into one another using
LOCC with some finite, but not necessarily certain, probability of success. States connected
in this way are said to be related by SLOCC, standing for stochastic LOCC [14, 9, 13]. In
deciding which family an arbitrary state belongs to, we can consider the EMs. Since EMs are
non-increasing under LOCC, the property of a state having an EM equal to zero is preserved
under LOCC. These zero EMs may therefore serve to differentiate between the families.

Verstraete et al [9] have analysed the properties of four-qubit systems under SLOCC, and
have demonstrated that there are nine distinct families of four-qubit states. The generic family
of four qubits Gabcd is identified as being the only family with hyperdeterminant � �= 0
and this is the only family having genuine four-particle entanglement. Of the remaining
eight families, we can distinguish three different groups based on the D

({k})
2 measures. The

families Labc2 and Lab3 have no zero D
({k})
2 , as indeed does the family Gabcd . Families La2b2

and La4 have a single zero D
({k})
2 , and the remaining four families have all D

({k})
2 = 0. This

classification holds for all generic members of each family, but may fail in special cases of zero
measure, such as the completely separable state that belongs to the generally non-separable
family Labc2 .

It is clear that further EMs are required to complete this classification. The linear entropies
are not useful in this context, as they have no obvious relation to the SLOCC families, although
they may be used to identify separable states.

In the context of SLOCC, we also mention the set of EMs introduced by Verstraete et al,
both for the four qubit system [9], and more generally [13]. These are different to the quantities
introduced here, but share the interesting similarity of being of the form of the modulus of
the sum of products of the wavefunction amplitudes aX (see equation (1)) combined with
antisymmetric tensors. These quantities bear a closer relation to the hyperdeterminant than do
the measures D

({k})
n [13].

5. Discussion

We have introduced the algebraic invariants D
({k})
n , which are entanglement monotones for

pure states of N qubits. They arise from considering all bipartitions of the system, and we
have compared D

({k})
n with the linear entropies S

({k})
n of the same partitions.

There are, in principle, an infinite number of EMs based upon a given bipartite
decomposition of an N-qubit state, as any concave, symmetric function of the Schmidt
coefficients is an EM. The usefulness of the linear entropy as indicator of separability is
clear, and the D

({k})
n may be seen as complementary to the linear entropies. Whereas S

({k})
n are

based upon the sum of the squares of the Schmidt coefficients (a non-decreasing monotone),
D

({k})
n are based on their geometric mean. Furthermore, D

({k})
n are able to reproduce the

fundamental algebraic invariants, at least for the small numbers of qubits (N � 4) for which
these quantities are known. It is hoped that D

({k})
n will be useful in the determination of AIs

and the classification of systems with N � 5 qubits.
From the form of D

({k})
n given in equation (11), it is clear how to extend the definition to

parties with Hilbert spaces of greater dimension, as the geometric mean construction is not
dependent on this dimension being two. Finally we note that it is a simple step to introduce
the average or minimum of the quantities D

({k})
n and obtain a single EM for a given n in the
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same way as has been done for the linear entropies [11, 15]. The behaviour of such quantities
is left for future work.
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Appendix A. Transformation properties of D({k})
n

In this appendix we show that D
({k})
n is invariant under local unitary transformations. We also

consider the action of a POVM (positive operator-valued measurement) on the system.

A.1. Invariance under unitary transformations of reduced qubits

We first consider the invariance of D
({k})
n with respect to unitary transformations of a qubit

belonging to k1, . . . , kn, which we take to be the first without lack of generality. We write the
wavefunction as

|�〉 =
l/2−1∑
X=0

(|0〉|αX〉|V0,X〉 + |1〉|αX〉|V1,X〉) (A1)

where |αX〉 are basis states of the other qubits in {k}, and |V(i=0,1),X〉 are the same vectors as
before, except that we treat the index (i) belonging to the first qubit separately from the rest
(X ). We thus write the set of vectors {V} as {V0,X, V1,X}, with the vectors V0,X to the left of
V1,X. We act on the first qubit with a general unitary operator U, giving the wavefunction

U |�〉 =
l/2−1∑
X=0

|0〉|αX〉(U00|V0,X〉 + U10|V1,X〉) + |1〉|αX〉(U01|V0,X〉 + U11|V1,X〉). (A2)

Define

F{j}(|�〉) ≡
l−1∧
i=0

dxji
({V0,X, V1,X}) (A3)

in terms of which

D({k})
n = l2

 ∑
j0<···<jl−1

F{j}(|�〉)F{j}(|�∗〉)


2/l

. (A4)

From equation (A2), the wedge product for the transformed wavefunction is

F{j}(U |�〉) =
l−1∧
i=0

dxji
({U00V0,X + U10V1,X}, {U01V0,X + U11V1,X}). (A5)

Since
∧

dx is linear, and zero when any two of its arguments are the same, we can write

F{j}(U |�〉) =
∑

k0,...,kl−1

l−1∧
i=0

dxji

({
UkX0VkX,X

}
,
{
Uk̄X1Vk̄X,X

})
(A6)

where kX = 0, 1 and k̄X = (1+kX) mod 2. We proceed by rearranging the vectors in the above
expression such that all V0,X stand to the left of V1,X, and collecting the appropriate elements
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of U with signs given by the antisymmetry of the wedge product. The term that requires no
interchange of vectors acquires a forefactor U

l/2
00 U

l/2
01 , and there is only one such term. There

are l/2 terms that require a single exchange of vectors. These terms have a forefactor
U

l/2−1
00 U10U

l/2−1
01 U11, and acquire a minus sign due to the antisymmetry. Proceeding similarly

for all the terms we arrive at

F{j}(U |�〉) =
l/2∑
k=0

(
l/2

k

)
(U00U11)

l/2−k(−U01U10)
k

l−1∧
i=0

dxji
({V0,X}, {V1,X})

= (DetU)l/2 F{j}(|�〉) (A7)

Therefore, the effect of a unitary transformation on any of the reduced qubits is to multiply each
of the terms in D

({k})
n by |Det U |2 = 1. Thus D

({k})
n is invariant under such transformations.

This invariance also holds when we consider general transformations of the entire n-
qubit subsystem defined by the locus of D

({k})
n . The operation of the most general l × l

unitary operator on this n-qubit Hilbert space multiplies each term in D
({k})
n by |Det U |4/l = 1,

demonstrating the invariance as above. Such invariance is not a requirement for being an EM,
but it will be of use in the following.

A.2. Invariance under unitary transformation of wedge-product

The unitary invariance of the system under transformations of the entire reduced qubit Hilbert
space enables us to write the state vector in a Schmidt decomposition |�〉 = ∑l−1

i=0 |φi〉|Ṽi〉
without altering D

({k})
n . The vectors |Ṽi〉 are orthogonal but not normalized. To demonstrate

that D
({k})
n is invariant under local unitary transformations of the qubits inside the wedge

product, we begin by writing D
({k})
n as

D({k})
n = l2

 ∑
j0<···<jl−1

l−1∧
i=0

dxji
({Ṽ})

l−1∧
i=0

dxji
({Ṽ∗})


2/l

. (A8)

We change the sum to include all values {ji}, and write the wedge-products as tensors

D({k})
n = l2

l!

 ∑
j0,...,jl−1

(
l−1∧
i=0

dx({Ṽ})
)

{ji }

(
l−1∧
i=0

dx
({Ṽ∗}))

{ji }


2/l

. (A9)

The tensor
∧l−1

i=0 dx({Ṽ}) corresponds to a sum of ordered l-tuples of vectors

l−1∧
i=0

dx({Ṽ}) =
∑
{k}

ε{k}
[
Ṽk0 , . . . , Ṽkl−1

]
(A10)

with antisymmetric coefficients ε{k} = ±1 from the determinant of equation (9). Using this
form, we have

D({k})
n = l2

l!

 ∑
j0,...,jl−1

∑
{k}

ε{k}
[
Ṽk0 , . . . , Ṽkl−1

]
{ji }

∑
{k′}

ε{k′}
[
Ṽ∗

k′
0
, . . . , Ṽ∗

k′
l−1

]
{ji }


2/l

.

(A11)

Summing over the j indices, and recognizing the scalar product of two vectors, we have

D({k})
n = l2

l!

 ∑
{k},{k′}

ε{k}ε{k′}〈Ṽk0 |Ṽk′
0
〉〈Ṽk1 |Ṽk′

1
〉 · · · 〈Ṽkl−1 |Ṽk′

l−1
〉


2/l

. (A12)
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We now use the orthogonality of |Ṽ〉 from the Schmidt decomposition, and the fact that
ε2
{k} = 1 to write

D({k})
n = l2

{
l−1∏
i=0

〈Ṽi |Ṽi〉
}2/l

. (A13)

Thus we see that D
({k})
n is the product of Schmidt coefficients, and thus invariant with respect

to unitary transformations of the qubits inside the wedge-product.

A.3. Action of POVM

That D
({k})
n is an EM follows from the above results and the argument given in the main text.

Here we give an alternative demonstration, based on that used by Dür et al in establishing the
tangle as an EM [14], which provides justification for the power 2/l chosen in the definition
of D

({k})
n .
Any local protocol can be decomposed into POVMs acting on a single qubit. As any

POVM can be further decomposed into a sequence of two-outcome POVMs, we need only to
demonstrate the non-increasing of D

({k})
n under the action of a two-outcome POVM to show

that it is an EM.
Let the two elements of the POVM be A1 and A2 such that A

†
1A1 + A

†
2A2 = 1. Using

singular-value decompositions for these matrices, we have Ai = UiXiV , where Ui, V are
unitary, V is the same for both elements and X1,2 are the diagonal matrices (a, b) and
(
√

1 − a2,
√

1 − b2).
Consider the initial state |ψ〉, which possesses the measure D

({k})
n (ψ). We write the

(unnormalized) states obtained by the action of the POVM on the state as |̃φi〉 = Ai |ψ〉.
Normalizing them, we have |φi〉 = |̃φi〉/√pi , where pi ≡ 〈̃φi |̃φi〉 with p1 + p2 = 1.

In analogy with the tangle, we wish to show that (D
({k})
n )ν, 0 < ν � 1 is non-increasing,

on average, under the action of the POVM, i.e.〈(
D({k})

n

)ν 〉 � (
D({k})

n

)ν
(ψ) (A14)

with 〈(
D({k})

n

)ν 〉 = p1
(
D({k})

n

)ν
(φ1) + p2

(
D({k})

n

)ν
(φ2) (A15)

for all possible choices of POVM and states |ψ〉. Since D
({k})
n is invariant under unitary

transformations, we may omit the matrices Ui from the decomposition of the POVM, such
that D

({k})
n (φi) = D

({k})
n (XiV ψ/

√
pi).

Performing the POVM on one of the reduced qubits, we evaluate
〈(
D

({k})
n

)ν 〉
to be

〈(
D({k})

n

)ν 〉 = {
p1

(
a2b2

p2
1

)ν

+ p2

(
(1 − a2)(1 − b2)

p2

)ν} (
D({k})

n

)ν
(ψ). (A16)

This is exactly the same dependence as found by Dür et al for the tangle [14]. For all 0 < ν � 1
the forefactor in equation (A16) is not greater than one and thus

〈(
D

({k})
n

)ν 〉 �
(
D

({k})
n

)ν
(ψ),

reiterating the conclusion that D
({k})
n is an EM. This result shows that the choice of the power

2/l in the definition of D
({k})
n is the natural choice, as it makes D

({k})
n transform under local

POVMs in the same way as do the concurrence-squared and the tangle.
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